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Abstract-Over the last 15 years since the introduction of MGbius-Hiickel theory, a number of varied questions has 
accumulated. The most interesting of these deals with the question of whether or not the Miibius-Hiickel theory is 
valid in the SCF and SCF-CI approximation. This paper presents a treatment which shows that the. repulsion and 
exchange contriiutions are independent of the MBbius vs Hiickel nature of the orbital array. Also it is shown that 
the one-electron terms are symmetry determined and derive from SCF coefficients. An analytical SCF-CI 
treatment is given. Several further unanswered questions are also considered. 

Many years ago the present author noted that photo- 
chemical reactions fall into two categories, those leading 
directly to the ground state of photoproduct and those in 
which a radiationless decay process to the ground state 
surface occurs after some molecular change in bonding 
of the initial excited state.’ Of the former, several 
examples were given including the Norrish Type I fission 
leading directly to a pair of acyl and alkyl radicals, and 
also hydrogen abstraction leading directly to an alkyl 
radical and a hydroxyalkyl radical.‘“.* Of the latter 
variety, the Type A dienone rearrangement ‘* was con- 
sidered, and later it was noted that pericyclic rear- 
rangements should also be included.” 

Although both types of photochemical reactions in- 
volve diradicals, it is the latter type which is the subject 
of the present paper which focusses on pericyclic sys- 
tems. That diradical-like species are indeed involved in 
pericyclic photo reactions is clear when one considers 
that for allowed examples, the one-electron treatment 
predicts a HOMO-LUMO crossing. It is at this point that 
one has a system which would be antiaromatic in the 
ground state but which in the excited state has an ideal 
arrangement of molecular orbitals for facile decay to the 
ground state. le The relevance of the nonbonding 
degeneracy to facile decay was first noted by the author 
in 1966.” 

Thus the subject of diradicals and diradicaloids is 
intimately entwined with the matter of aromaticity, anti- 
aromaticity, and the Mobius-Htickel concept. 

The concept of aromaticity is germane to ground state 
molecules, to transition states, and to photochemistry. 
The beginning of our understanding of the subject was 
the HUckel4N + 2 rule*” which put the idea of aromati- 
city ** on a firm basis.3 The recognition that six electron 
transition states have low energies was first made by 
Evans.’ 

At the time, it was not recognized that the Hiickel 
4N t 2 rule applied to only half of the possible cyclic 
molecules and transition states. In 1966 the present 
author reported the categorization of cyclic systems into 
two general types-Miibius and Htickel. With zero or an 
even number of sign inversions between adjacent orbitals 
of a cyclic system, one has a Htickel array, and the 
4N t2 rule is indeed followed. However, for orbital 
arrays with an odd number of inversions, one has a 
Mobius system, and the Htickel rule no longer holds. 

Here the requirements for aromaticity are inverted. A 
closed shell, stable transition state or molecule is now 
obtained instead with 4N electrons and an antiaromatic 
system with 4N + 2 electrons. 

Indeed, prior to 1966 there were some molecules pos- 
sessing Mobius orbital arrays. What was still lacking was 
the realization that all cyclic systems, whether in ground 
or transition states, fell into these two categories with the 
number of electrons and number of sign inversions con- 
trolling the aromaticity or anti-aromaticity of the sys- 
tem?“’ 

The Mobius-Huckel generalization6 was cited in two 
subsequent publications by Dewar,‘* publications which 
accepted Zimmerman’s theoretical conclusions and 
which provided a second derivation of the Mobius- 
Htickel results. This derivation was based on the brilliant, 
but still approximate, NBMO perturbation method.13 

However, subsequently a series of less enthusiastic 
publications by Dewar appeared, each one providing 
some new criticism of the concept as derived by Zim- 
merman. The first criticism appeared in 1969.“” Dewar 
argued that Htickel theory was unreliable as a guide to 
aromaticity and Htickel theory had been employed in the 
original Mobius-Htickel derivation.6~t4b~ts~‘* 

Most recently, a 1978 paper by Bewar*’ introduced 
some further criticisms while acknowledging that “The 
idea that pericyclic transition states might be of the 
anti-Hiickel” (i.e. Mobius) “type was first proposed in 
print by Zimmerman who restated Evans’ theory of 
pericyclic reactions without acknowledgement”. 

The present paper deals with the main criticisms of 
substance, namely that the Miibius-Hiickel concept6** 
suffers a weakness due to the original derivation using 
Htickel theory.** 

The question has been addressed by Borden and 
Salem23 in the special case of 4-ring pericyclic transition 
states. Here it was shown that an explicit _SCF cal- 
culation of the two alternative species, Mobius and 
Htickel, still led to the Zimmerman prediction deriving 
from Htickel theory. 

In proceeding more generally, we provide an analytical 
solution to the general SCF problem of cyclic Mobius 
and Hiickel systems. 

The starting point is the double group table (Table 1) 
which encompasses both Miibius and Hiickel sym- 
metries. 
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Table 1. 

C” c, c, c2 cs cq c5 cc *. . . CN_, 

A v’ v’ “0 vo vo v@ v@ . . . . 

En Ei Vu V’ V* V’ V’ - V‘ V’ **as 

1 E1” v* “-1 v-t v-l v-. v-3 V-3 . . . . 

EH 
E; v” v= v’ us v* VlQ VIZ . . . . 

2 q vo v-* v-b v-6 v-l v-*o v-12 . . . . 

En E; ,,o v3 v‘ v’ v 
II II 18 

V V . . . . 

3 q y. v-s v-I v-l v-ll v-1s v-la .... 

Et ;; 1: v4 v’ 
VIZ V” VZO V2’ 

v-4 V-’ v-12 “-1s v-*O v-2. 
. . . . 

. . . . 

. . . 

. . . . 

B vo UN P .JN V4N USN .6N . . . . 

Here Y is defined as in eqn (1) and N is the number of 
basis orbitals. 

y = eidN 
(la) 

vN=-1 and VZN=tl. (lb, c) 

Thus Mobius systems can contain the representations El, 
ES, ES, etc. , . . . . and B while Htlckel systems can contain 
the A, &, E,, &, . . . . . etc. representations.” The 
significance of eqns (lb) and (lc) is that a 360” rotation in 
a k&bitts system converts each basis orbital into its 
negative while in a Hilckel system the basis orbital is 
regenerated with the original sign. This can be seen in 
eqn (2) where R is the 360” rotation operator R = vkN, N 
is the number of basis orbitals and k is the MO number 
which will be odd for Miibius systems and zero or even 
for Hilckel ones. 

Rxr = vkNxr = (ei”N)xr = + X~ (2) 

(with the t sign for k being 0 or even and - sign for k 
odd). Here the subscript r is used to represent any 
arbitrary orbital in the basis set. 

In constructing a Mobius or Hilckel MO we use as 
LCAO MO coefficients the characters selected from the 
appropriate representation. For example, we use the A 
characters for the lowest energy Hilckel MO, followed 
by the EZH characters for the next degenerate pair of 
MO%. For Mobius systems, we begin with the Err” 
characters for the first degenerate pair of MO’s followed 
by E3M for the next pair, etc. This is justified in the basic 
derivation of the eigenvectors.” The system’s energy is 
given by: 

E = q akIk + I: nk,,$..%%,, - k& mkrnGi%nk 
ksm 

(3) 

where nk is the occupation number of MO k, nkm gives 
the number of pairs of electrons with one from MO k 
and the other from MO m, and mkm gives the number of 
pairs of electrons from MO’s k and m, but with the same 
spin. 

The Rrst term in eqn (3) is the total of one-electron 
energies for the Mobius and Hilckel systems under con- 
sideration. We note that the LCAO MO coefficients 

taken from our double group table are symmetry deter- 
mined and thus are SCF coefficients. That this term is 
lower in energy for Miibius systems with 4N electrons or 
for Hiickel systems with 4N t 2 electrons has already 
been established in our earlier work.6 

Hence it is the last two terms which need to be 
compared for Hiickel and Mobius systems. The positive 
term is the sum of molecular orbital repulsion integrals, 
and the negative term is the sum of MO exchange 
integrals. 

These MO repulsion and exchange integrals are readily 
expressed in terms of atomic orbital or other (e.g. hybrid) 
localized orbitals. Thus, in the ZDO approximation, 

G %-n = ; c,k&nc~kc%n%s (4) 

and 

(5) 

where ‘yrS is a two-center integral representing repulsion 
between two electrons, one in basis orbital r and one in s. 
The asterisk signifies the complex conjugate. In this 
connection we note that the pairs of vectors given by any 
representation in the double group table are indeed com- 
posed of complex conjugates 

Furthermore, the group table provides the SCF LCAO 
MO coefficients needed to evaluate the MO repulsion 
and exchange integrals. Thus substitution into eqns (4) 
and (5) from the character table leads to eqns (6) and (7a) 
respectively. 

G rs, = (l/N’) z v’~v~~v-‘~v-“~~~~ 

= (l/N’) z yr. = (l/N) x YW (6) 
l.D r 

Here k and m are MO numbers: 0 for Hiickel ryresen- 
tation A, 1 and - I for Miibius re resentation El ,2 and 
-2 for Hilckel representation Ez 8 , etc. 

It is seen that the MO repulsion integral Gkmkm has a 
value which is independent of k and m and therefore not 
dependent on the Mobius or Htickel nature of the orbital 
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array. In fact, the repulsion energy is seen to be just the 
sum of all of the one-center and two-center electron- 
electron repulsions. 

For the exchange integral, insertion of the LCAO- 
coefficients gives 

= (l/N*) x y(‘-‘Hk-m)yra 
r.s 

0) 

For any given Mobius or Hiickel molecule, there will be 
a group of occupied MO’s. Each pair of occupied MO’s 
corresponds to a k value and an m value and thus a 
(k-m). It is readily seen that two corresponding Mobius 
and Htickel molecules with the same number of orbitals 
have the same set of (k-m) values. 

This means that the Mobius and Htickel systems will 
consist of the same summation (note eqn 7a) of exchange 
integrals. 

That the (k - m) values do come in matching pairs can 
be seen by reference to Fig. 1. This might be pictured as 
part of a generalized circle mnemonic6*836 giving the 
energies of both some MBbius system and its Htickel 
isomer. This is then a juxtaposition of the Zimmerman 
circle mnemonic6** for Mobius systems with that of Frost 
and Musulin” for Hiickel ones. 

It can be seen that for any pair of isomers, there will 
be the same distributions of differences in occupied 
MO’s (i.e. in their k and m values) as a consequence of 
these MO’s being in a regular sequence.. . . -3, -2, -1.0, 
+1, +2, +3,... with the differences being 0 or some 
multiple of 2 for both Mobius and Htickel arrays. 

Equation (7a) can be recast in real form by recognizing 
that r and s are arbitrary indices. Rewriting (7a) as (7b) 

G f:mk = (l/N’) x ~(‘-“~-~)yls 
T.LI 

(7b) 

and then adding eqns (7a) and (7b) and dividing by two, 
we obtain 

G frkk = (l/N*) x [Cos (s - rHk - m)nlNlr,. (8) 
T.(i 

If we begin numbering our atoms at s = 0 and realize due 
to symmetry that the double summation just provides N 
duplicates of each term, we have 

G p',",k = (l/N) rzo [Cos r(k - m)?rlNly+ 
N--l 

(9) 

Independent of the Mobius and Htickel character of the 
array, (k - m) is some multiple of 2; and, as noted above, 

-3(M) 

I I 

+3(M) 

Fig. 1. Distribution of k and m values in MBbius and 
systems. 

Hiickel 

the GEmk values come in matching pairs for the Mobius 
and Htickel systems. 

Hence the total SCF energy is readily shown to be 

E SCF = 2 z Ik + (z(= - 1)/N) ,zo Ym 

N-l 

- (2/N) r Em [Cos (r(k - m)dN)l yti 
(10) 

(Z is the number of occupied MO’s) 

and the two-electron contribution to this energy is in- 
dependent of the Mobius or Htickel nature of each N 
orbital array. The two-electron contributions to the SCF 
energies as well as some typical integrals are listed in 
Table 2. 

Thus, in the SCF ZDO approximation both the repul- 
sion and the exchange modifications of the one-electron 
Hiickel energies are the same for the Mobius as for the 
Htickel cycle. Also, the one-electron contributions derive 
from SCF coefficients as a result of symmetry. 

It is to be noted that the above comparison of a 
Mobius and Htickel rings of the same size uses simple 
SCF wave functions. In this, one of the two systems has 
a closed shell configuration and the other an open shell. 
The use of a single configuration in this approximation 
could be justified since it is the one approached adiaba- 
tically in a pericyclic reaction as the degeneracy is 
reached. 

However, at the degeneracy the approximation is not 
ideal. The actual states of the open shell systems are really 
linear combinations of the three configurations 0,, & and 
0,: 

2 t t 

$-“H - + 

where IJ” and +_-. are the highest doubly occupied 
degenerate pair of MO’s for a given open shell molecule. 

In each case 0, and & are degenerate and 0, is of 
higher energy by 2Gh,,k (i.e. 2Gk.,,,.,,,k) where k and m 
must be taken as the degenerate pair of MO’s (i.e. +n 
and -n) containing the two electrons. This integral can 
be evaluated by use of eqns (7), (8) or (9) (note below). 

Admixture of the three configurations 0,, & and 0, 
requires knowledge of the off-diagonal matrix elements. 
Those between 0, and 0, or & can be shown to be 
zero, signifying that 0, does not mix further. The matrix 
element between 0, and & is Gti,,,,,, (i.e. Gk=kemm) 
where, again, k and m are the doubly occupied 
degenerate pair. 

Proceeding along lines similar to those for the earlier 
integrals we can obtain the expression in eqns (11) and 
(12). 

G kk,,,,,, = (l/N*) x “(‘+‘Kk-m)yR 
r.* 

(11) 

G kkmm = (l/N*) x cos [(r + sHk - m)lrlNlr,. (12) 
=.* 

We note that in general this integral is not the same as 
Ghk, due to the first two subscripts representing com- 
plex conjugates. However, for the special case of even 
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Table 2. Typical values of integrals and total Z-electron contributions to the SCF energies in analytic form 

Possible MO Possible 
Repulsion Exchange Summed Z-Electron 

Species Integrals Gkmkm Integrals Gkmmk Energfes 

Three- GM0 GM0 
Ring 

-1-l-l-l' 1111 
None 

Cations 
GM0 0000 Exchange Contribution: None 

Each - 

(1/3)Y,, + (2/3)r,s 
Total Electron-electron 
Interaction Energy: 

(1/3hll + (2/3)y,2 

Anions GM0 -11-11 

Repulsion Contrfbution: 

2Y,, 
+ 4Y 

12 

MO 
G%OO~ 62222s 

GM0 -2-2-2-2402 

GM0 
0220' 

GM0 O-2-20 

Exchange Contrfbutfon: 

-C(2/3)Yll - (2/3)~~~1 

Each = Each = 
Total Electron-electron 
Interactfon Energy: 

W3)Y11 + (2/3)~~~ W3)Yll - (1/3h* (4/3hl + (14/3)Y,2 

-~_--__~~___~~___~-~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Four- GM0 GM0 -1-l-1-1, 1111, GM0 0220' GM0 
Ring -111-l Repulsion Contrfbutfon: 

GM0 
1-11-1, 

(312)~ 
Each - 11 

+ 3~~2 + (3/2)r 
12 

GM0 0000 ’ GM0 -2-2-2.-2 (1/4)Y), - (1/4)Yl, 
Exchange Contrfbutfon: 

GM0 GM0 
W/2)Y11 - (1/2)Y,, 3 

2222' -20-20 Total Electron-electron 

Each = '/4Y1;+V2Y12+l/4y 
InteractIon Energy: 

13 Y 
11 

+ 3, 
12 

+ 2Y 
13 

Benzene 
MO MO 

Giioo* G-2-2-2-2* 62222’ 
GM0 MO 

-200-2’ 4:20 * G-222-2 
Repulsion Contrfbutfon: 

GM0 GM0 GM0 -20-20' 0202' -22-22 
GM0 GM0 
-3-l-l-3, -311-J. 

(5/2)Y,, + 5Y12 + 5Y13 + W)Y,, 

GM0 GM0 GM0 
-1-l-l-l. 1111. 3333' 

GM0 GM0 -11.11, -133-l' GYi31 Exchange Contrfbutfon: 

GM0 GM0 -3-3-3-3’ -3-l-3-1, 

GM0 GM0 GM0 

For k-m = 22, Gkmmk - 

-31-31' -11-11' -13-13, W)Y,~ + (~/G)Y~~ 

..MO 
b1313 

Each = 

(l/51rl, + (l/3)Y12 

+ (l/31,13 + (1/6)~~~ 

-(1/6)r13 - (1/5)~~~ 

For k-m = t4* Gkmmk = 

(l/6)rll - (115)~ 
12 

-(l/Gh, + W)r,, 

-[r, 1 
+ (1/3)Y,2 - Yll - W3)YJ 

Total Electron-electron 
Interactfon Energy: 

(3/2)r 1, + U4/3)Y12 

+ 6~ I3 + (17/G)r,, 

Footnotes: Where an option Is avaflable of which degenerate members to use, all possible fntc- 
1 f Interest are given In the second column. 

%t ioie common fashfon (e g. y 
The basis set Integrals are numbered in 

, etc.) rather than the y 
fn the text for mathematfc;l sfAkifil8y. 

t equfvalents used 

those for HCckel systems are ltsted. 
Both integrals encoun!&eJ'tA %ius.systems and 

The calculated energies are Independent of whfch degen- 
erate member Is occupfed for the antfaromatfc system and are self-consfstent as a consequence 
of the symmetry. The same energy Is obtalned for single occupation of each of the two de en- 
l rate members by opposite spin electrons but the operator will not be self-consistent In e hfs 

case. 

systems, k-m = N; and, it can be shown that then 
CL,,,, does become equal to Glrmmk. 

Beyond this, it can be demonstrated that for the odd 
series Gwrmm vanishes. For the even series Gum,,, can be 
shown to have the form 

G kkmm - - Gkmmk = U/W,, - (2/Nh2 

+ (2IN1~13 . . . - (l/Nh. (13) 

Here the signs weighting the one-center and two-center 

basis set repulsion integrals a!ternate. A weighting of l/N 
is found when each center has only one other at the 
appropriate distance, while Z/N results when there are 
two centers at the same distance. 

Hence, prior to configuration interaction in the open 
shell cases we have a degenerate pair of configurations, 
0, and &, and a higher energy configuration 0,. For 
the odd sized rings, no further interactions occur and 
these correspond to final states; linear combinations such 
as (1/~2)(0, + &) are equally acceptable. Thus, for the 
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Odd Rings Even Rings 

0, - 
NO 

pz - 
CI occurs 

00 - 

:: -z/= ii 

0Ox p_ 

After CI 

Fii. 2. Patterns of states of open shell systems. 
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odd ring cases the energy comparisons of the SCF level state (l/d2)(4,, + &) = 4’ becomes degenerate with 
are unchanged by any con6guration interaction of the 4,. The ground state is SO = 6- = (1/~2)(& - &) and 

type considered. is lower than the separate configurations by Gw. This 
For the even rings, the result of con@uration inter- situation is depicted in Fii. 2 and some typical energies 

action is splitting of the 0, and & con&rations toegive are given in Table 3. The 4-ring example is in agreement 
a lower energy and a higher energy state. The h@her with the results of Borden and Salem for SO.*’ Also, the 

Table 3. Energies after CI 

Rblur S-Ring. 2 Electrons 

Eg = E2 = 21, + (l/3)1,, + (2/3)~,~ 

El . = 2$ l (2/3hll l (l/3)Y12 

6-111-l - (1/3)Y\, - (l/3)1,2 

5-l-111 = O 

Hlckrl 3-Ring. 4 Electrons 

f. - E2 - 210 + 212 + (4/3.)~,, + (14/3)~,~ 

2, n 210 + 212 +'(5/3)r,, + (13/3)y,2 

6-222-2 = (l/311,, - (1/3)Y,2 

6-2-222 = o 

Hllckcl 4-Rlno. 4 ElcctrOlS 

E. l 210 + 2X2 + (314)7,., + (I/2).1,, + (714)~~~ 

E2 = El - 210 + 2x2 * (5/4)y,, + (5/2)Y,2 + (6/4)7,3 

f-222-2 - (1/4)Y,, - (1/2)Y,2 + (1/4)Y,, 

G-2-222 = 6-222-2 

Hlckel S-RtnQ. 4 Electrons 

G-2-222 = O 

noblur 6-Rlns, 6 Electrons 

E, - E2 = 21, + 213 + (4/3)Y,, + 5Yl2 + (17/3)Y,3 + 3Yl4 

El 
= 21, t 213 + (5/3)Y,, + (13/3)Y,2 + (16/3)Y,, + (8/3)y14 

6-3-333 - (1/6)~,, - (l/3)1,2 + (1/31Y,3 - (1/61y,4 
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results are the same as derived from use of real MO’s and 
configuration interaction. 

Then, we are left with the observation that the open 
shell systems with an even number of orbitals are stabil- 
ized by configuration interaction to the extent given in eqn 
(13) and Table 3 while the closed shell, aromatic systems 
do not have parallel stabilization. However, inspection of 
eqn (13) with insertion of typical values leads us to 
minuscule stabilization (0.26 eV for the 4-ring, 0.13 eV 
for the 6-ring, precise values depending on 
parameterization) compared to the several eV stabiliza- 
tion of the one-electron Miibius-Hiickel effects we con- 
sidered earlier.** 

The conclusion then is that the MCbius-Hiickel ap- 
proach to dealing with pericyclic reactions and ground 
state species is unchanged when electron-electron inter- 
actions are included. 
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