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Abstract—Over the last 15 years since the introduction of Mobius-Hiickel theory, a number of varied questions has
accumulated. The most interesting of these deals with the question of whether or not the Mébius-Hiickel theory is
valid in the SCF and SCF-CI approximation. This paper presents a treatment which shows that the repulsion and
exchange contributions are independent of the Mobius vs Hiickel nature of the orbital array. Also it is shown that
the one-electron terms are symmetry determined and derive from SCF coefficients. An analytical SCF-CI
treatment is given. Several further unanswered questions are also considered.

Many years ago the present author noted that photo-
chemical reactions fall into two categories, those leading
directly to the ground state of photoproduct and those in
which a radiationless decay process to the ground state
surface occurs after some molecular change in bonding
of the initial excited state.' Of the former, several
examples were given including the Norrish Type I fission
leading directly to a pair of acy! and alkyl radicals, and
also hydrogen abstraction leading directly to an alky!
radical and a hydroxyalkyl radical.'=® Of the latter
variety, the Type A dienone rearrangement '> was con-
sidered, and later it was noted that pericyclic rear-
rangements should also be included.'

Although both types of photochemical reactions in-
volve diradicals, it is the latter type which is the subject
of the present paper which focusses on pericyclic sys-
tems. That diradical-like species are indeed involved in
pericyclic photo reactions is clear when one considers
that for allowed examples, the one-electron treatment
predicts a HOMO-LUMO crossing. It is at this point that
one has a system which would be antiaromatic in the
ground state but which in the excited state has an ideal
arrangement of molecular orbitals for facile decay to the
ground state.'® The relevance of the nonbonding
degeneracy to facile decay was first noted by the author
in 1966.'

Thus the subject of diradicals and diradicaloids is
intimately entwined with the matter of aromaticity, anti-
aromaticity, and the Mobius~Hiickel concept.

The concept of aromaticity is germane to ground state
molecules, to transition states, and to photochemistry.
The beginning of our understanding of the subject was
the Hiickel 4N + 2 rule** which put the idea of aromati-
city ** on a firm basis.® The recognition that six electron
transition states have low energies was first made by
Evans.*

At the time, it was not recognized that the Hiickel
4N +2 rule applied to only half of the possible cyclic
molecules and transition states. In 1966 the present
author reported® the categorization of cyclic systems into
two general types—Madbius and Hiickel. With zero or an
even number of sign inversions between adjacent orbitals
of a cyclic system, one has a Hiickel array, and the
4N +2 rule is indeed followed. However, for orbital
arrays with an odd number of inversions, one has a
Mdébius system, and the Hiickel rule no longer holds.
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Here the requirements for aromaticity are inverted. A
closed shell, stable transition state or molecule is now
obtained instead with 4N electrons and an antiaromatic
system with 4N + 2 electrons.

Indeed, prior to 1966 there were some molecules pos-
sessing Mébius orbital arrays. What was still lacking was
the realization that all cyclic systems, whether in ground
or transition states, fell into these two categories with the
number of electrons and number of sign inversions con-
trolling the aromaticity or anti-aromaticity of the sys-
tem.7.9—ll

The Mobius-Hiickel generalization® was cited in two
subsequent publications by Dewar,'? publications which
accepted Zimmerman’s theoretical conclusions and
which provided a second derivation of the Mobius~
Hiickel results. This derivation was based on the brilliant,
but still approximate, NBMO perturbation method."

However, subsequently a series of less enthusiastic
publications by Dewar appeared, each one providing
some new criticism of the concept as derived by Zim-
merman. The first criticism appeared in 1969.'** Dewar
argued that Hiickel theory was unreliable as a guide to
aromaticity and Hiickel theory had been employed in the
original Mobius~Hiickel derivation.5'4>-1518

Most recently, a 1978 paper by Dewar®' introduced
some further criticisms while acknowledging that “The
idea that pericyclic transition states might be of the
anti-Hiickel” (i.e. Mobius) “type was first proposed in
print by Zimmerman who restated Evans’ theory of
pericyclic reactions without acknowledgement”.

The present paper deals with the main criticisms of
substance, namely that the Mobius-Hiickel concept®*®
suffers a weakness due to the original derivation using
Hiickel theory.?

The question has been addressed by Borden and
Salem® in the special case of 4-ring pericyclic transition
states. Here it was shown that an explicit SCF cal-
culation of the two alternative species, Mobius and
Hiickel, still led to the Zimmerman prediction deriving
from Hiickel theory.

In proceeding more generally, we provide an analytical
solution to the general SCF problem of cyclic Mébius
and Hiickel systems.

The starting point is the double group table (Table 1)
which encompasses both Mobius and Hiickel sym-
metries.
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Table 1.
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Here v is defined as in eqn (1) and N is the number of
basis orbitals.

in/N

(la)
(1b, ¢)

v=e

WN==1 and v =+1

Thus Mébius systems can contain the representations E;,
E;, Es, etc. ..... and B while Hiickel systems can contain
the A, E,, Es Ee, etc. representations.* The
significance of eqns (1b) and (lc) is that a 360° rotation in
a Mobius system converts each basis orbital into its
negative while in a Hiickel system the basis orbital is
regenerated with the original sign. This can be seen in
eqn (2) where R is the 360° rotation operator R=+*N,N
is the number of basis orbitals and k is the MO number
which will be odd for Mébius systems and zero or even
for Hiickel ones.

Ry, ="M = (€™ = 2 X )
(with the + sign for k being 0 or even and — sign for k
odd). Here the subscript r is used to represent any
arbitrary orbital in the basis set.

In constructing a Mobius or Hiickel MO we use as
LCAO MO coefficients the characters selected from the
appropriate representation. For example, we use the A
characters for the lowest energy Hiickel MO, followed
by the E,™ characters for the next degenerate pair of
MO’s. For Mobius systems, we begin with the E™
characters for the first degenerate pair of MO's followed
by E;™ for the next pair, etc. This is justified in the basic
derivation of the eigenvectors.” The system’s energy is
given by:

E= 2 nka+ 2 l:|k|'nGxn(:(m'_ 2 mkaIh(dn?mk (3)
k k=m k=m
where ny is the occupation number of MO k, ny gives
the number of pairs of electrons with one from MO k
and the other from MO m, and m,,, gives the number of
pairs of electrons from MO’s k and m, but with the same
spin.

The first term in eqn (3) is the total of one-electron
energies for the Mébius and Hiickel systems under con-
sideration. We note that the LCAO MO coefficients

taken from our double group table are symmetry deter-
mined and thus are SCF coefficients. That this term is
lower in energy for Mobius systems with 4N electrons or
for Hiickel systems with 4N +2 electrons has already
been established in our earlier work.®

Hence it is the last two terms which need to be
compared for Hiickel and Mobius systems. The positive
term is the sum of molecular orbital repulsion integrals,
and the negative term is the sum of MO exchange
integrals.

These MO repulsion and exchange integrals are readily
expressed in terms of atomic orbital or other (e.g. hybrid)
localized orbitals. Thus, in the ZDO approximation,

rnkm = z CilConCH rszm')'rs (C)]

and

kmmk = 2 Crkcsrnc rmC skYrs (5)

where v,, is a two-center integral representing repulsion
between two electrons, one in basis orbital r and one in s.
The asterisk signifies the complex conjugate. In this
connection we note that the pairs of vectors given by any
representation in the double group table are indeed com-
posed of complex conjugates

Furthermore, the group table provides the SCF LCAO
MO coefficients needed to evaluate the MO repulsion
and exchange integrals, Thus substitution into eqns (4)
and (5) from the character table leads to eqns (6) and (7a)
respectively.

Gk = (I/NZ)E YT TRy Ty

=N 1 =(IIN) D Yor ©)

Here k and m are MO numbers: 0 for Hiickel represen-
tation A, 1 and — 1 for Mébius re l.{)resentatlon E™, 2 and
-2 for Hiickel representation E,", etc.

It is seen that the MO repulsion integral Gymxm has a
value which is independent of k and m and therefore not
dependent on the Mobius or Hiickel nature of the orbital
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array. In fact, the repulsion energy is seen to be just the
sum of all of the one-center and two-center electron-
electron repulsions.

For the exchange integral, insertion of the LCAO-
coefficients gives

kmmk (IINZ)E l,rk sm ,—rm —skyrs

= (N2 Y, v ™y, (7a)

For any given Mébius or Hiickel molecule, there will be
a group of occupied MO’s. Each pair of occupied MO’s
corresponds to a k value and an m value and thus a
(k —m). It is readily seen that two corresponding Mébius
and Hiickel molecules with the same number of orbitals
have the same set of (k —m) values.

This means that the Mdbius and Hiickel systems will
consist of the same summation (note eqn 7a) of exchange
integrals.

That the (k —m) values do come in matching pairs can
be seen by reference to Fig. 1. This might be pictured as
part of a generalized circle mnemonic®** giving the
energies of both some Mobius system and its Hiickel
isomer. This is then a juxtaposition of the Zimmerman
circle mnemonic®® for Mabius systems with that of Frost
and Musulin? for Hiickel ones.

It can be seen that for any pair of isomers, there will
be the same distributions of differences in occupied
MO’s (i.e. in their k and m values) as a consequence of
these MO’s being in a regular sequence.... -3, -2, -1, 0,
+1, 42, 43,... with the differences being 0 or some
multiple of 2 for both Mobius and Hiickel arrays.

Equation (7a) can be recast in real form by recognizing
that r and s are arbitrary indices. Rewriting (7a) as (7b)

Gtk = (1/N?) 2 A ™ (7b)

and then adding eqns (7a) and (7b) and dividing by two,
we obtain

kmmk - (llNz) 2 [COS (S r)(k m) W/N] Yrs (8)

If we begin numbering our atoms at s = 0 and realize due
to symmetry that the double summation just provides N
duplicates of each term, we have

Giaouw =(1/N) 2 [Cos r(k — m)7/N]y.o. )
N I

Independent of the Mobius and Hiickel character of the
array, (k —m) is some multiple of 2; and, as noted above,

-3(M) +3(M)
~2(H) +2(H)
+1(M)
-1(m)
0(H)
Fig. 1. Distribution of k and m values in Mobius and Hiickel
systems.

the G, values come in matching pairs for the Mdbius
and Hiickel systems.
Hence the total SCF energy is readily shown to be

Eocr=2 °§: L+ @EZ-DN) 3, 7

N-1

—QINy °§<:° [Cos (¢(k - my/N)l yro
’ (10)

(Z is the number of occupied MO’s)

and the two-electron contribution to this energy is in-
dependent of the Mébius or Hiickel nature of each N
orbital array. The two-electron contributions to the SCF
energies as well as some typical integrals are listed in
Table 2.

Thus, in the SCF ZDO approximation both the repul-
sion and the exchange modifications of the one-electron
Hiickel energies are the same for the Mdbius as for the
Hiickel cycle. Also, the one-electron contributions derive
from SCF coefficients as a result of symmetry.

It is to be noted that the above comparison of a
Mobius and Hiickel rings of the same size uses simple
SCF wave functions. In this, one of the two systems has
a closed shell configuration and the other an open shell.
The use of a single configuration in this approximation
could be justified since it is the one approached adiaba-
tically in a pericyclic reaction as the degeneracy is
reached.

However, at the degeneracy the approximation is not
ideal. The actual states of the open shell systems are really
linear combinations of the three configurations @,, #, and

#::

o6 8
h— o+
it — 4

where ¢, and -, are the highest doubly occupied
degenerate pair of MO’s for a given open shell molecule.

In each case f, and @ are degenerate and @, is of
higher energy by 2Gymmk (.. 2Gyemsmx) Where k and m
must be taken as the degenerate pair of MO’s (i.e. +n
and —n) containing the two electrons. This integral can
be evaluated by use of eqns (7), (8) or (9) (note below).

Admixture of the three configurations @,, 6, and 8,
requires knowledge of the off-diagonal matrix elements.
Those between §, and @, or @, can be shown to be
zero, signifying that @, does not mix further. The matrix
element between @, and B is Guymm (€. Giekomm)
where, again, k and m are the doubly occupied
degenerate pair.

Proceeding along lines similar to those for the earlier
integrals we can obtain the expression in eqns (11) and
12).

Gkkmm = (llNz) E V('ﬂxk_m)’)'n (11)
Gikmm = (1I/N?) Y, cos [(r + s{k —m)a/N]ye.  (12)

We note that in general this integral is not the same as
Gymxm due to the first two subscripts representing com-
plex conjugates. However, for the special case of even
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Table 2. Typical values of integrals and total 2-electron contributions to the SCF energies in analytic form

Possible MO
Repulsion

Possible
Exchange

Summed 2-Electron

Species Integrals kakm Integrals kamk Energies
MO MO
Three- 6 ) .71+ & None Repulsion Coptribution:
Ring 1-1-1-1" "1 (73)y. -+ (2/3)x
Catfons MO n 12
G0000 Exchange Contribution: None
Fach = Total Elect lect
ota ectron-electron
(1/3)71, * (2/3)712 Interaction Energy:
+
(1/3)711 (2/3)712
""""""" Mo e T o heetene
Three- 6.9.1.1-1° S 6y 1-11 Repulsion Contribution:
Ring 2y + 4y
Anions gMo 11 12
-11-11
GggOO' 62222’ GggZO' Exchange Contribution:
Mo Mo oMo -[2/73)y - (2/3)y ]
-2-2-2-2*"0202 0-2-20 total E1 Ject
- otal Electron-electron
Each = Each Interaction Energy:
- 4 + 4
(1/3)7“ + (2/3)1r12 (1/3)7“ (1/3)~rlz ( /3)wrll (1 /3)\r12
............ ﬁ---------------------------.-.-.-------------------------—------------------
;?:;- 6_2_1_1_1' G??ll, Gggzo, GT?11_1 Repulsion Contribution:
M + +
31_11_1’ fach = (3/2)711 3712 (3/2)yl’
MO MO .
T T (/a)y, - (1/8)y, E’E?:‘;:i’ C°""(':';:;‘°"-]
Mo Mo i T Y13
2222°* "-20-20 ;o:a] Elﬁctrgn-eIectron
Each = 1/4y_+1/2y +1/4 nteraction Energy:
1 Y
12 13 1 * 371: * 2713
MO MO MO MO MO MO .
Benzene 65000 ° G-z-z-z-z'"zzzzz' G_soo_z. 6220+ S_222.-2 ?epu;sion Contribution: (5/2)
MO MO M MO §/2)y + 5y + 5y + {5/2)y
6 20-20" S0202* ®-22-22  ®-.3-1-1-3, S-311.g, 1 12 13 14
gMo gMo gMo GMO MO gho
ﬂ1-1-1-1' 1111, “3333° -11+11, "~133-1" 71331 Exchange Contribution:
0 MO
G , 6 R - - . .
i8-3-3-3 M0-3-1-3-:46 For k-m = 42, G, [-,11 + (1/3)1,12 T, (1/3)7“1
63131 G097-110 627313, (V/6)y  + (1/6)y
0 . 11 12 Total Electron-electron
61313 -(1/6)713 . (1/6)71u Interaction Energy:
E‘Ch)' (1/3) For k-m = +4, Gy 00 = (3/2)Yx1 * (]4/3)1xz
1/6)y  + (1/3)y
11 12 (1/6)y . - (1/6)y AT (17/6)Y1~
+ (1/3)113 + (1/5)1‘“ 1 12
-(1/6 +
(1/ )Yl3 (1/6)71“
Footnotes: Where an option is available of which degenerate members to use, all possible inte-
grals of interest are given in the second column. The basis set integrals are numbered in

the more common fashion {(e.g. v,,, Y
in the text,for mathematical simpIic‘%y.
those for Huckel systems are listed.

,» etc.) rather than the vo,, vq,, etc. equivalents used
Both integrals encoun%ered §
The calculated energies are independent of which degen-

n Mobius systems and

erate member 1s occupied for the antiaromatic system and are self-consistent as a consequence

of the symmetry.

The same energy is obtained for single occupation of each of the two degen-

erate members by opposite spin electrons but the operator will not be self-consistent in his

case.

systems, k—m=N; and, it can be shown that then
Guinm does become equal to Gymmi.

Beyond this, it can be demonstrated that for the odd
series Gumm vanishes. For the even series Guymm can be
shown to have the form

Gismm = Grmmk = (IN)y11 = @/N) 112

+2N)ys. ..~ 1N)yyin.  (13)

Here the signs weighting the one-center and two-center

basis set repulsion integrals a'ternate. A weighting of 1/N
is found when each center has only one other at the
appropriate distance, while Z/N results when there are
two centers at the same distance.

Hence, prior to configuration interaction in the open
shell cases we have a degenerate pair of configurations,
@, and @,, and a higher energy configuration #;,. For
the odd sized rings, no further interactions occur and
these correspond to final states; linear combinations such
as (1/V2)(#, £#,) are equally acceptable. Thus, for the
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0dd Rings
by —
NO
¢2 Cl occurs
Py

Even Rings
9, —— —h
+
9
9
2
P 26y kmm
Before CI
o
After Cl

Fig. 2. Patterns of states of open shell systems.

odd ring cases the energy comparisons of the SCF level
are unchanged by any configuration interaction of the
type considered.

For the even rings, the result of configuration inter-
action is splitting of the @, and @, configurations to give
a lower energy and a higher energy state. The higher

state (1/V2)Xdo+ ¢2)=¢* becomes degenerate with
1. The ground state is So= ¢~ =(1/V2Xé,~ ¢,) and
is lower than the separate configurations by Gyxmm. This
situation is depicted in Fig. 2 and some typical energies
are given in Table 3. The 4-ring example is in agreement
with the results of Borden and Salem for S,.>' Also, the

Table 3. Energies after CI

WUbTus 3-Ring, Z Electrons
Eo = EZ = 211 + (1/3)711 + (2/3)712

By = 2L, + (2/3)yqy + (1/3)7q,
5_“1_1 bt (1/3)7‘1 - (1/3)712
i =0

Rlickel 3-Ring, 4 Electrons
Eo =E, = 210 + 2!2 + (4/3)111 + (14/3)1lz

Ey = 215 + 21, +(5/3)yyy + (13/3)yy,

6-222-2 - (‘/3)711 - (1/3)712

6 2.222 = 0

HBckel 4-Ring, & Electrons

Eo - 2!o + 2!2 + (3/4)7n + (7/2)-1.lz + (7/4),-,'3

Ep = Ey = 21g + 21, + (5/4)vyy + (5/2)v, + (9/8)vy,

82222 = (W/4)vyy = (172)yy, + (1/4)yy,

8_p_222 = S.222-2

Hickel S-Ring, # Electrons
=0

§_p.222

Mobius 6-Ring, 6 Electrons

E, = Ep = 21y + 214 ¢+ (873)vqy + Svyp + (17/3)yy3 ¢ 3vqy

Ey = 21y ¢ 214 + (5/3)vyq + (03/3)7y, + (19/3)vy5 + (8/3)vq4

6_3_333 = (‘/5)Y|1 - (1/3)712 + (1/3)713 - (1/5)714

6 3.333 " 5.333.3
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results are the same as derived from use of real MO’s and
configuration interaction.

Then, we are left with the observation that the open
shell systems with an even number of orbitals are stabil-
ized by configuration interaction to the extent given in eqn
(13) and Table 3 while the closed shell, aromatic systems
do not have parallel stabilization. However, inspection of
egn (13) with insertion of typical values leads us to

mmuscule stabilization (0.26 eV for the 4-ring, 0.13eV
for the 6-ring, precise values depending on

naramatarizatinn) ramnarad ta tha cavaral aVU ctahiliva_
paramoiCriZaqcii; ComparcG O iAC sEvofai ¢ SlacuiZa

tion of the one-electron Mébius-Hiickel effects we con-
sidered earlier.”®

The conclusion ihen is thai the Mobius-Hiickel ap-
proach to dealing with pericyclic reactions and ground
state species is unchanged when electron—electron inter-
actions are included.
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